
For a given function g(n), the set little-omega: (g(n))= {f(n): ∀ c> 0,∃  n0> 0such that ∀ n >= 

n0, we have 0 <= cg(n) < f(n) }.
F (n) becomes arbitrarily large relative to g(n)as n approaches infinity:

lim [f(n) / g(n)] =α  .

n->α
g (n) is a lower bound for f(n)that is not asymptotically tight.

………………………..

Chapter-2

Divide and Conquer

2.1 General Method

Definition

Divide the problem into a number of sub problems; conquer the sub problems by solving 
them  recursively.  If  the  sub  problem  sizes  are  small  enough,  solve  the  sub  problems 
recursively, and then combine these solutions to create a solution to the original problem.

                                                                                                              
                                                                                                                  

                
Divide-and conquer is a general algorithm design paradigm

Divide: divide the input data S in two or more disjoint subsets S1, S2, 
Recursively: solve the sub problems recursively
Conquer: combine the solutions for S1, S2… into a solution for S
The base case for the recursion is sub problems of constant size. Analysis can be done using 

recurrence equations

a problem of size 

n 

Sub problem 

1
Sub problem 

2

Of size n/2

A solution to sub 

problem 1

A solution to sub 

problem 2

Solution to original 

problem



 

Algorithm 

Algorithm D-and-C (n: input size) 

{

if n ≤ n0 /* small size problem*/

Solve problem without further sub-division;

Else

  {

    Divide into m sub-problems;

    Conquer the sub-problems by solving them

    Independently and recursively; /* D-and-C(n/k) */

   Combine the solutions;

   }

}

Advantage

 Straight forward and running times are often easily determined

2.2 Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem of size n into parts, where each sub-
problem is of size n/b. Also, suppose that a total number of g(n) extra operations are needed 
in the conquer step of the algorithm to combine the solutions of the sub-problems into a 
solution of the original problem. Let f (n) is the number of operations required to solve the 
problem of size n. Then f satisfies the recurrence relation and it is called divide-and-conquer 
recurrence relation. 
                                            F (n) =a f(n/b)+g(n) 

The computing time of Divide and conquer is described by recurrence relation.

T (n) = {g(n)  where n   small

          {T (n1) +T (n2) +………. + T (n k) + f (n)      other wise

T (n) is the time for Divide and Conquer on any input of size n and g (n) is the time to 

compute the answer directly for small inputs. The function of f (n) is the time for dividing P 

combining solutions to sub problems. For divide-and-conquer-based algorithms that produce 

sub problems of the same type as the original problem, then such algorithm described using 

recursion.

The complexity of many divide-and-conquer algorithms is given by recurrence of the form.

T (n) = {T (1)               n=1



          {a T(n/b) + f(n)  n>1 where a and b are known constants, and n is a power of b (n=b k ). 

One of the methods for solving any such recurrence relation is called substitution method.

Examples

If a=2 and b=2. Let T (1) =2 and f (n)=n. Than

T (n) = 2T (n/2) +n

        =2[2 T (n/4) + n/2] +n

        =4 T (n/4) +2n

       =4[2 T (n/8) +n/4] + 2n

        =8 T (n/8) + 3n

          .

          .

          .

In general, T (n) = 2i T (n/2i) +in, for any log 2 n>= i>=1. In Particular, then T (n) = 2 log
2 

n   T 

(n/ 2 log
2 

n   ) + n log 2 n corresponding to choice of  

 i= log 2 n. Thus, T (n) = n T (1) +  n log 2 n = n log 2 n + 2 n. 

2.3 Divide and Conquer Applications

 
2.3.1 Min and Max

The minimum of a set of elements: The first order statistic i = 1

The maximum of a set of elements: The n th order statistic i = n

The median is the “halfway point” of the set I = (n+1)/2, is unique 

When n is odd

         i =  (n+1)/2  = n/2 (lower median) and  (n+1)/2  = n/2+1 (upper median), when n is 

even

Finding Minimum or Maximum

Alg: MINIMUM (A, n)

         min ← A[1]

         for i ← 2 to n

            do if min > A[i]

              then min ← A[i]

         return min

How many comparisons are needed?

n – 1: each element, except the minimum, must be compared to a smaller element at least 

once. The same number of comparisons is needed to find the maximum. The algorithm is 

optimal with respect to the number of comparisons performed.

Simultaneous Min, Max

Find min and max independently

          Use n – 1 comparisons for each ⇒  total of 2n – 2



At most 3n/2 comparisons are needed. Process elements in pairs. Maintain the minimum and 
maximum  of  elements  seen  so  far.  Don’t  compare  each  element  to  the  minimum  and 
maximum separately.  Compare  the elements  of a  pair  to  each other.  Compare  the larger 
element to the maximum so far, and compare the smaller element to the minimum so far. This 
leads to only 3 comparisons for every 2 elements.

Analysis of Simultaneous Min, Max

Setting up initial values:
n is odd: compare the first two elements, assign the smallest one to min      and the largest one 
to max
n is even:

Total number of comparisons:

n is odd: we do 3(n-1)/2 comparisons
n is  even:  we  do  1  initial  comparison  +  3(n-2)/2  more  comparisons  =  3n/2  -  2 
comparisons

Example

1. n = 5 (odd), array A = {2, 7, 1, 3, 4}

1. Set min = max = 2 

2. Compare elements in pairs: 

          

 1 < 7 ⇒  compare 1 with min and 7 with max 

   ⇒ min = 1, max = 7                                 3-comparisions

                        3 < 4⇒  compare 3 with min and 4 with max  

⇒ min = 1, max = 7                                   3-comparisions

                           3(n-1)/2 = 6 comparisons

2. n = 6 (even), array A = {2, 5, 3, 7, 1, 4}

1. Compare 2 with 5: 2 < 5

2. Set min = 2, max = 5 

3. Compare elements in pairs:

          3 < 7 ⇒  compare 3 with min and 7 with max   

                    ⇒  min = 2, max = 7                                       3-comparisons

          

 1 < 4 ⇒  compare 1 with min and 4 with max                

                    ⇒  min = 1, max = 7

                             3n/2 - 2 = 7 comparisons                           3-comparisions       

                             ⇒  min = 1, max = 7

2.3.2 Binary Search

The basic idea is to start with an examination of the middle element of the array. This will 

lead  to  3  possible  situations:  If  this  matches  the  target  K,  then  search  can  terminate 

successfully,  by printing out the index of the element  in the array.  On the other hand, if 

K<A[middle], then search can be limited to elements to the left of A[middle]. All elements to 



the right of middle can be ignored. If it turns out that K >A[middle], then further search is 

limited to elements to the right of A[middle]. If all elements are exhausted and the target is 

not found in the array, then the method returns a special value such as –1.

1st Binary Search function:

int BinarySearch (int A[ ], int n, int K)

{

int L=0, Mid, R= n-1;

while (L<=R)

{

Mid = (L +R)/2;

if ( K= =A[Mid] )

return Mid;

else if ( K > A[Mid] )

L = Mid + 1;

else

R = Mid – 1;

}

return –1 ;}

Let us now carry out an Analysis of this method to determine its time complexity. Since there 

are no “for” loops, we cannot use summations to express the total number of operations. Let 

us examine the operations for a specific case, where the number of elements in the array n is 

64. When n= 64 Binary Search is called to reduce size to n=32

When n= 32 Binary Search is called to reduce size to n=16

When n= 16 Binary Search is called to reduce size to n=8

When n= 8 Binary Search is called to reduce size to n=4

When n= 4 Binary Search is called to reduce size to n=2

When n= 2 Binary Search is called to reduce size to n=1.

Thus we see that Binary Search function is called 6 times (6 elements of the array were 

examined) for n =64. Note that 64 = 26.Also we see that the Binary Search function is called 

5 times (5 elements of the array were examined) for n = 32. Note that 32 = 25 Let us consider 

a more general case where n is still a power of 2. Let us say n = 2k.

Following the above argument for 64 elements, it  is easily seen that after k searches, the 

while loop is executed k times and n reduces to size 1. Let us assume that each run of the 

while loop involves at most 5 operations.                 Thus total number of operations: 5k.  The  

value of k can be determined from the expression 2k = n .Taking log of both sides Log 2 k = 

log n Thus total number of operations = 5 log n. We conclude that the time complexity of the 

Binary search method is O (log n), which is much more efficient than the Linear Search 

method.



2nd method Binary Search function

Binary-Search (A; p; q; x)

1. if p > q return -1;

2. r = b (p + q)=2 c

3. if x = A[r] return r

4. else if x < A[r] Binary-Search(A; p; r; x)

5. else Binary-Search(A; r + 1; q; x)

² The initial call is Binary-Search (A; 1; n; x). 

List   [0]   [1]     [2]         [3]        [4]         [5]        [6]         [7]         [8]         [9]        [10] 

[11]

4 8 19 25 34 39 45 48 66 75 89 95

List length=12

                                                                 Search list

         [0]   [1]     [2]         [3]        [4]         [5]        [6]         [7]         [8]         [9]        [10]  

[11]

4 8 19 25 34 39 45 48 66 75 89 95

  

                                                                 

                                                                 mid        

Search list, list[0]….list[1]

Middle element

         Mid=left + right/2

4 8 19 25 34 39 45 48 66 75 89 95

 Sorted list for a binary search

Value of first, last, mid, no of comparisons for search item 89

Iteration First Last Mid Last[mid] No.of Comparisons

1 0 11 5 39 2

2 6 11 8 66 2

3 9 11 10 89 1(found it is true)

Binary search tradeoffs

Benefit: More efficient than linear search (for array of N elements performs at most log2  N 

comparisons)

Disadvantages: requires that array elements to be sorted.

                                                                      

  

15

5

7

5

17



Full and balanced Binary search tree 

                                                   

Logarithmic Time Complexity of Binary Search

Our analysis  shows that binary search can be done in time proportional to the  log  of the 

number of items in the list this is considered very fast when compared to linear or polynomial 

algorithms  .The  table  to  the  right  compares  the  number  of  operations  that  need  to  be 

performed for algorithms of various time complexities. The computing time binary search by 

best, average and 

Worst cases:

Successful searches

Θ (1) best, Θ (log n) average

Θ (log n) worst

Unsuccessful searches

Θ (log n) for best , average and worst case

2.3.2 Merge Sort Algorithm

Divide: Divide the n-element sequence into two subsequences of n/2 elements each.

Conquer: Sort the two subsequences recursively using merge sort.

16 198
5

1
6 10 18

21

49

17 47

11 19 43 67



Combine: Merge the two sorted sequences.

How to merge two sorted sequences:

We have two sub arrays A [p...q] and A [q+1..r] in sorted order. Merge sort algorithm merges 

them to form a single sorted sub array that replaces the current sub array A [p...r]. 

To  sort  the  entire  sequence  A  [1...n],  make  the  initial  call  to  the  procedure  MERGE-

SORT(A,1,n).

MERGE-SORT (A, p, r)

{

1.         IF p<r                           //Check for base case
2.        THEN q=FLOOR[(p+r)/2]               //Divide step   
3.        MERGESORT (A,p,q)                  //Conquer step
4.        MERGESORT(A,q+1,r)              //Conquer step
5.        MERGE (A, p, q, r)                      //Conquer step.

}

The pseudo code of the MERGE procedure is as follow:

 MERGE (A, p, q, and r)

       n1 ← q − p + 1

       n2 ← r – q

      Create arrays L [1 . . . n1 + 1] and R[1 . . n2 + 1]

      FOR i ← 1 TO n1

      DO L[i] ← A [p + i − 1]

      FOR j ← 1 TO n2

      DO R[j] ← A [q + j ]

      L [n1 + 1] ← ∞

      R [n2 + 1] ← ∞

       i ← 1

       j ← 1

      FOR k ← p TO r

      DO IF L [ i ] ≤ R [ j]

      THEN A [k] ← L [ i ]

      i ← i + 1

      ELSE A[k] ← R[j] 

       j ← j + 1

  

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree each node represents a recursive call 

of  merge-sort  and  stores  unsorted  sequence  before  the  execution  and its  partition  sorted 

sequence at  the end of the execution.  The root is the initial  call.  The leaves are calls on 

subsequences of size 0 or 1.



                        

  

                                                                                  

Analyzing  Divide-and-

Conquer Algorithm

When an algorithm contains a recursive call to itself, its running time can be described by a 

recurrence equation or recurrence which describes the running time. 

Analysis of Merge-Sort:

The height h of the merge-sort tree is O (log n) 

– at each recursive call we divide in half the sequence, 

The overall amount or work done at the nodes of depth i is O (n) 

– we partition and merge 2i sequences of size n/2i 

– we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O (n log n)

Depth #seqs size

0 1 n

1 2 n/2 

i 2i n/2i

… … … 



Recurrence

If  the  problem size  is  small  enough,  say  n<=c for  some  constant  c,  the  straightforward 

solution takes constant time, can be written as  θ (1). If we have  a sub problems, each of 

which is  1/b the size of the original.  D (n) time to divide the problem and C (n) time to 

combine the solution.

The recurrence is 

T (n) =        θ (1)                                     if n <= c

                               a T (n/b) + D(n) + C(n)       otherwise   

Divide: The divide step computes the middle of the sub array which takes constant time, 

D(n)=θ(1) 

Conquer: We recursively solve two sub problems, each of size n/2, which contributes 2T(n/2) 

to the running time. 

Combine: Merge procedure takes θ (n) time on an n-element sub array. C (n)=θ(n)

The recurrence is 

T (n) =       θ (1)                          if n=1

                              2T (n/2) + θ (n)         if n>1 

Let us rewrite the recurrence

T (n) =         C                               if n=1

                              2 T (n/2) + cn              if n>1

C represents the time required to solve problems of size 1 

A Recursion Tree for the Recurrence

                                                       T (n)                                                 

                                                        

                                         T (n/2)                    T (n/2)

A Recursion Tree for the Recurrence

                                                                 Cn

                                                                                                                        

                                               Cn/2                    Cn/2

 

   

                                   

                              T (n/4)           T (n/4)        T (n/4)          T (n/4)

 

A Recursion Tree for the Recurrence



                                                                Cn      cn

                                                                                                    

 

                                                  Cn/2               Cn/2           cn

                                  Cn/4            Cn/4       Cn/4            Cn/4 cn

  

                            c           c            c        c   c       c   c        c cn

A Recursion Tree for the Recurrence in the above recursion tree, each level has cost cn. The 

top  level  has  cost  cn.  The  next  level  down has  2  sub  problems;  each  contributing  cost 

cn/2.The next level has 4 sub problems, each contributing cost cn/4. Each time we go down 

one  level,  the  number  of  sub  problems  doubles  but  the  cost  per  sub  problem  halves. 

Therefore, cost per level stays the same. The height of this recursion tree is log n and there 

are log n + 1 levels. Total Running Time of a tree for a problem size of 2i has log 2i + 1 = i +1 

levels. The fully expanded tree recursion tree has log n+1 levels. When n=1 than 1 level log 

1=0, so correct number of levels log n+1. Because we assume that the problem size is a 

power of 2, the next problem size up after 2i is 2i + 1. A tree for a problem size of 2i + 1 has 

one more level than the size-2i tree implying i + 2 levels. Since log 2i + 1 = i + 2, we are done 

with the inductive argument. Total cost is sum of costs at each level of the tree. Since we 

have log n +1 levels, each costing cn, the total cost is cn log n + cn. Ignore low-order term of 

cn and constant coefficient c, and we have, Θ (n log n). The fully expanded tree has lg n +1 

levels and each level contributes a total cost of cn. Therefore T (n)= cn log n + cn = θ(nlog n). 

Growth of Functions We look at input sizes large enough to make only the order of growth of 

the running time relevant. 

2.3.4 Divide and Conquer: Quick Sort

Pick one element in the array,  which will be the  pivot. Make one pass through the array, 

called a partition step, re-arranging the entries so that, entries smaller than the pivot are to the 

left of the pivot. Entries larger than the pivot are to the right. Recursively apply quick sort to 

the part of the array that is to the left of the pivot, and to the part on its right. No merge step, 

at the end all the elements are in the proper order. Choosing the Pivot some fixed element: 

e.g. the first, the last, the one in the middle. Bad choice - may turn to be the smallest or the 

largest element, and then one of the partitions will be empty. Randomly chosen (by random 

generator) still a bad choice. The median of the array (if the array has N numbers, the median 

is the [N/2] largest number). This is difficult to compute - increases the complexity.   The 

median-of-three choice: take the first, the last and the middle element. Choose the median of 

these three elements. 



Quick Sort:

Quick sort is introduced by Hoare in the year 1962.

All elements to the left of pivot are smaller or equal than pivot, and 

All elements to the right of pivot are greater or equal than pivot

Pivot in correct place in sorted array/list

Divide: Partition into sub arrays (sub-lists)

Conquer: Recursively sort 2 sub arrays 

Combine: Trivial

Problem: Sort n keys in non-decreasing order

Inputs: Positive integer n, array of keys S indexed from 1 to n

Output: The array S containing the keys in non-decreasing order.

Quick sort (low, high)

1. if high > low

2. then partition(low, high, pivotIndex)

3. quick sort(low, pivotIndex -1)

4. quick sort(pivotIndex +1, high)

Partition array for Quick sort

partition (low, high, pivot)

1. pivotitem = S [low]
2. k=low
3. for j = low +1 to high
4. do if S [ j ] < pivotitem
5. then k = k + 1
6. exchange S [ j ] and S [ k ]
7. pivot = k
8. exchange S[low] and S[pivot]

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

 Divide: pick a random element x (called pivot) and partition S into 

L elements less than x

E elements equal x 

G elements greater than x 

  Recur: sort L and G 

  Conquer: join L, E and G

Partition

We partition an input sequence as follows:

       -We remove, in turn, each element y from S and 

       -We insert y into L, E or G, depending on the result of the comparison with      the pivot x

Each insertion and removal is at the beginning or at the end of a sequence, and hence takes 

O(1) time. Thus, the partition step of quick-sort takes O (n) time



Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree. Each node represents a recursive call 

of  quick-sort  and  stores.  Unsorted  sequence  before  the  execution  and  its  pivot.  Sorted 

sequence at the end of the execution

– The root is the initial call 

– The leaves are calls on subsequences of size 0 or 1

                                               

                                                                  

                                              

Partitioning Array

Given a pivot, partition the elements of the array such that the resulting array consists of: 

1. One sub-array that contains elements >= pivot 

2. Another sub-array that contains elements < pivot

The sub-arrays  are stored in the original  data array.  Partitioning loops through, swapping 

elements below/above pivot.

There are a number of ways to pick the pivot element.  In this example, we will use the first 

element in the array:

40 20 10 80 60 50 7 30 100

Partitioning result

7 20 10 30 40 50 60 80 100

[0]             [1]             [2]             [3]             [4]              [5]             [6]             [7]             [8]

                                                                     

<=data [pivot]                                                                            >data [pivot]

Quick sort:  Worst Case

Assume first element is chosen as pivot. Assume we get array that is already in order:

Pivot_index=0

2 4 10 12 13 50 57 63 100



[0]             [1]             [2]             [3]              [4]             [5]             [6]             [7]              [8]

Complexity of Quick Sort

If we have an array of equal elements, the array index will never increment i or decrement j, 

and will do infinite swaps. i and j will never cross.

Worst Case: O (N2)

This  happens  when  the  pivot  is  the  smallest  (or  the  largest)  element.  Then  one  of  the 

partitions is empty, and we repeat recursively the procedure for N-1 elements. 

Worst-case Running Time

The worst case for quick-sort occurs when the pivot is the unique minimum or maximum 

element. One of L and G has size n - 1 and the other has size 0

The running time is proportional to the sum

n + (n - 1) + … + 2 + 1 

Thus, the worst-case running time of quick-sort is O (n2)

Depth time

0 N

1 n - 1

… …

n – 1 1

                                                         

Worst-Case Analysis

The pivot is the smallest (or the largest) element 

 T (N) = T (N-1) + cN, N > 1 

 Telescoping: 

 T (N-1) = T (N-2) + c (N-1) 

 T (N-2) = T (N-3) + c (N-2) 

 T (N-3) = T (N-4) + c (N-3) 

 …………... 

 T (2) = T (1) + c.2 

 T (N) + T (N-1) + T (N-2) + … + T (2) =

 = T (N-1) + T (N-2) + … + T (2) + T (1) +

 C (N) + c (N-1) + c (N-2) + … + c.2 

  

T (N) = T (1) + 

  c times (the sum of 2 thru N)  

= T (1) + c (N (N+1) / 2 -1) = O (N2)

Average-case: O (N logN) 

Best-case: O (N logN)



The pivot is the median of the array, the left and the right parts have same size. There are 

logN partitions, and to obtain each partition we do  N comparisons (and not more than  N/2 

swaps). Hence the complexity is O (NlogN).

Best case Analysis:

T (N) = T (i) + T (N - i -1) + cN 

The time to sort the file is equal to the time to sort the left partition with i  elements,  plus  the 

time to sort the right partition with N-i-1 elements, plus the time to build the partitions.

The pivot is in the middle 

T (N) = 2 T (N/2) + cN 

Divide by N: T (N) / N = T (N/2) / (N/2) + c

Telescoping:

T (N) / N          = T (N/2) / (N/2) + c 

T (N/2) / (N/2) = T (N/4) / (N/4) + c 

T (N/4) / (N/4) = T (N/8) / (N/8) + c

…… 

T (2) / 2 = T (1) / (1) + c 

Add all equations:

T (N) / N + T (N/2) / (N/2) + T (N/4) / (N/4) + …. + T (2) / 2 = 

= (N/2) / (N/2) + T (N/4) / (N/4) + … + T (1) / (1) + c.logN 

After crossing the equal terms: 

T (N)/N = T (1) + c * LogN 

T (N) = N + N * c * LogN = O (NlogN)

Advantages and Disadvantages:

Advantages

One of the fastest algorithms on average

Does not need additional memory (the sorting takes place in the array - this is 

called in-place processing)

Disadvantages

The worst-case complexity is O (N2)

Applications

Commercial applications  

Quick Sort generally runs fast 

No additional memory

The above advantages compensate for the rare occasions when it runs with O (N2)

2.3.5 Divide and Conquer: Selection Sort

Definition: First find the smallest in the array and exchange it with the element in the first 

position,  then  find the  second smallest  element  and exchange it  with  the  element  in  the 

second position, and continue in this way until the entire array is sorted. 



Selection sort is:

       -The simplest sorting techniques. 

       -a good algorithm to sort a small number of elements

       -an incremental algorithm – induction method

Selection sort is Inefficient for large lists. 

Incremental algorithms  à process the input elements one-by-one and maintain the solution 

for the elements processed so far.

Let  A [1…n] be an array of n elements. A simple and straightforward algorithm to sort the 

entries in A works as follows. First, we find the minimum element and store it in A [1]. Next, 

we find the minimum of the remaining n-1 elements and store it in A [2]. We continue this 

way until the second largest element is stored in A [n-1]. 

Input: A [1…n];

Output: A [1…n] sorted in non-decreasing order;

1. for i←1 to n-1

2.  k←i;

3.  for j←i+1 to n

4. if A[j]<A[k] then k←j;

5. end for;

6. if k≠ i then interchange A[i] and A[k];

7. end for;

Procedure of selection sort

i.Take multiple passes over the array. 
ii.Keep already sorted array at high-end.
iii.Find the biggest element in unsorted part.
iv.Swap it into the highest position in unsorted part.
v.Invariant: each pass guarantees that one more element is in the correct position (same as 
bubble sort) a lot fewer swaps than bubble sort!

Start- unsorted 

Pass 1                   

Pass 2

Pass 3

12 8 3 21 99 1

12 8 3 21 99 1

12 8 3 21 1 99

12 8 3 21 1 99

12 8 3 1 21 99

12 8 3 1 21 99



Pass 4

Pass 5

Sorted

Example Execution of selection sort Tracing

                             
Pass 2                                                                           Pass 3

Last 3                                                                            Last 2

Largest index 0, 0, 0                                                       largest index 0, 1

P=1, 2, 3                                                                         p=1, 2

                   

Pass 4

last = 1

Largest Index = 0, 1

p = 1

Selection Sort Implementation for Best Case [2 4 6 8 10]

1 8 3 12 21 99

1 8 3 12 21 99

1 3 8 12 21 99

1 3 8 12 21 99

1 3 8 12 21 99



Selection Sort Analysis

For an array with size n, the external loop will iterate from n-1 to 1. 

for (int last = n-1; last>=1; --last)  For each iteration, to find the largest number in sub array, 

the number of comparison inside the internal loop must is equal to the value of last.  for (int 

p=1;p <=last; ++p)  Therefore the total comparison for Selection Sort in each iteration is (n-

1) + (n-2) + ….. 2 + 1.  Generally, the number of comparisons between elements in Selection 

Sort can be stated as follows:

Selection Sort – Algorithm Complexity

Time Complexity  for  Selection  Sort  is  the same for  all  cases  -  worst  case,  best  case or 

average  case  O  (n2).  The  number  of  comparisons  between  elements  is  the  same.  The 

efficiency of Selection Sort does not depend on the initial arrangement of the data.

Alg.: SELECTION-SORT (A)                               Cost        times

1. n ← length[A]                                                      c1            1

2. for j ← 1 to n – 1                                                 c2             n

3. do smallest ← j                                              c3           n-1

4. for i ← j + 1 to n                                                               c4             

5. do if A[i] < A[smallest]                                                        c5             

6.then smallest ← i                                                          c6            

7. exchange A[j] ↔ A[smallest]                             c7             n-1

2.11 Stressen’s Matrix Multiplication:

Multiplication of Large Integer 

Consider the problem of multiplying two (large) n-digit integers represented b arrays of their 

digits such as:

A = 12345678901357986429   B = 87654321284820912836
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The grade-school algorithm: 

a1  a2  …  an

               b1  b2  …  bn

                (d10)                                d11d12                               …                                     d1n

                                (d20)                                              d21d22                                  …                                   d2n

                            … … … … … … … 

                     (dn0)                                        dn1dn2                              …                                        dnn 

 

Efficiency: Θ (n2) single-digit multiplications

First Divide-and-Conquer Algorithm 

A small example: A ∗  B where A = 2135 and B = 4014

A = (21·102 + 35), B = (40 ·102 + 14)

So, A ∗  B = (21 ·102 + 35) ∗  (40 ·102 + 14) 

                 = 21 ∗  40 ·104 + (21 ∗  14 + 35 ∗  40) ·102 + 35 ∗  14

In general, if A = A1A2 and B = B1B2   (where A and B are n-digit, 

A1, A2, B1, B2 are n/2-digit numbers),

A ∗  B = A1 ∗  B1·10n + (A1 ∗  B2 + A2 ∗  B1) ·10n/2 + A2 ∗  B2

Recurrence for the number of one-digit multiplications M(n): 

                           

M (n) = 4 M (n/2),  

M (1) = 1

Solution: M (n) = n2 

Second Divide-and-Conquer Algorithm:

A ∗  B = A1 ∗  B1·10n + (A1 ∗  B2 + A2 ∗  B1) ·10n/2 + A2 ∗  B2

The idea is to decrease the number of multiplications from 4 to 3:  

   (A1 +  A2)  ∗  (B1 +  B2)  =  A1  ∗  B1 +  (A1  ∗  B2  +  A2  ∗  B1)  +  A2  ∗  B2,

I.e.,  (A1  ∗  B2  +  A2  ∗  B1)  =  (A1 +  A2 )  ∗  (B1 +  B2 )  -  A1  ∗  B1 -  A2  ∗  B2, 

which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications M (n):

            M(n) = 3M(n/2),   M(1) = 1

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585

Example of Large-Integer Multiplication:

2135 ∗  4014

(21*10^2 + 35) * (40*10^2 + 14)



= (21*40)*10^4 + c1*10^2 + 35*14

where c1 = (21+35)*(40+14) - 21*40 - 35*14, and

21*40 = (2*10 + 1) * (4*10 + 0)

           = (2*4)*10^2 + c2*10 + 1*0

where c2 = (2+1)*(4+0) - 2*4 - 1*0, etc.

This process requires 9 digit multiplications as opposed to 16.

Conventional Matrix Multiplication:

Brute-force algorithm

c00     c01               a00   a01             b00   b01

                                              =                               *

c10     c11               a10   a11             b10   b11

a00 * b00  + a01 * b10     a00 * b01  + a01 * b11

                 =

a10 * b00  + a11 * b10      a10 * b01  + a11 * b11

     8 multiplications, 4 additions               Efficiency class in general: Θ  (n3) 

Strassen’s Matrix Multiplication 

Strassen’s algorithm for two 2x2 matrices (1969):

                                   c00     c01               a00   a01             b00   b01

                                                                             =                       *

                                   c10     c11               a10   a11             b10   b11

              

                            m1   + m4 - m5 + m7                  m3 + m5                                             

                    =      m2 + m4                                                 m1   + m3 - m2 + m6 

m1 = (a00 + a11) * (b00 + b11)

m2 = (a10 + a11) * b00 

m3 = a00 * (b01 - b11)

m4 =  a11 * (b10 - b00)

m5 = (a00 + a01) * b11 

m6 = (a10 - a00) * (b00 + b01)

m7 = (a01 - a11) * (b10 + b11)     

               

 7 multiplications, 18 additions 



Strassen observed [1969] that   the product of two matrices can be computed in general as 

follows

                        C00    C01        A00    A01                B00    B01

                      =                                                   *

                         C10    C11      A10    A11                 B10    B11

                           

                                  M1   + M4 - M5 + M7                        M3 + M5 

                 =                                                 

                                   M2 + M4                                             M1   + M3 - M2 + M6 

Formulas for Strassen’s Algorithm 

M1 = (A00 + A11) ∗  (B00 + B11)

M2 = (A10 + A11) ∗  B00

M3 = A00 ∗  (B01 - B11)

M4 =  A11 ∗  (B10 - B00)

M5 = (A00 + A01) ∗  B11 

M6 = (A10 - A00) ∗  (B00 + B01)

M7 = (A01 - A11) ∗  (B10 + B11)

Analysis of Strassen’s Algorithm 

If n is not a power of 2, matrices can be padded with zeros.

Number of multiplications:

                                 M (n) = 7 M(n/2),   M(1) = 1

Solution: M (n) = 7log 2n = nlog 27 ≈ n2.807    vs.  n3 of brute-force alg. 

Algorithms  with  better  asymptotic  efficiency  are  known  but  they  are  even  more 

complex and not used in practice.

******


